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Abstract 
 In Archaea, almost all introns in pre-tRNA, 
pre-rRNA, and pre-mRNA are spliced through two 
common steps by protein enzymes: cleavage of the 
precursor with splicing endonuclease, and ligation of 
the exons with RNA ligase. We found the first 
examples of archaeal pre-mRNA splicing and 
cleavage of the pre-mRNA with a novel subclass of 
archaeal splicing endonuclease. We further solved the 
novel tertiary structure of the splicing endonuclease, 
and revealed that the lineage-specific insertion of 
amino acid residues in the endonuclease expands the 
recognition of the substrate precursor RNA. We also 
discuss the possible involvement of tRNA splicing 
and its machinery in the origin of the tRNA molecule. 
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Introduction 
 In bacteria and eukaryotes, some types of RNA 
splicing occur by precursor RNAs themselves, or 
with the aid of trans-factors including RNA-protein 
complexes [1]. However, in Archaea, with a few 
exceptions of group II introns found in Euryarchaeota 
[2], almost all of the introns in pre-tRNA [3], 
pre-rRNA [4], and pre-mRNA [5] are thought to be 
spliced through two steps catalyzed by protein-based 
enzymes: cleavage at exon-intron boundaries in 
precursor RNA with splicing endonuclease [6], and 
ligation of the exon fragments with RNA ligase [7].  
 The splicing endonuclease recognizes a specific 
structure in the substrate precursor RNA 
bulge-helix-bulge (BHB) motif, composed of a 
4-basepair central helix flanked by two 3-base bulge 
loops at the 3’ sides together with basepairs, and 
cleaves the specific sites in the “bulge” region [8, Fig. 
1A]. The recognition of the substrate with the 
enzyme is independent of the other part of the 
substrate, including the majority of the exon region 
[9]. Archaeal splicing endonucleases are classified 
into three subclasses based on subunit structures: 
homo-tetrameric enzymes, homo-dimeric enzymes, 
and hetero-tetrameric (alpha2beta2) enzymes [6]. 
Archaeal splicing endonuclease shares a common 
ancestor with eukaryotic tRNA splicing endonuclease 
[10]. 
 The recently identified archaeal RNA ligase 
[11] shares a common ancestor with a bacterial RNA 
repair enzyme [12] and a human tRNA ligase [13]. 
Archaeal RNA ligase joins the 3’ end of the 5’ exon 

with a 2’,3’-cyclic phosphate residue and the 5’ end 
of the 3’ exon without a phosphate residue, and uses 
the phosphate residue at the 3’ end of the 5’ exon as 
the linkage between the exons [14]. 
 
Discovery of archaeal pre-mRNA splicing, and 
identification of structural elements in archaeal 
splicing endonuclease for expansion of substrate 
RNA recognition 
 In 2002, we identified the first examples of 
introns in archaeal protein coding genes [15]. Further 
analysis revealed that pre-mRNA fragments were 
cleaved at the exon-intron boundaries with 
heteromeric crencarcheal splicing endonuclease [5]. 
Notably, some of the exon-intron boundaries in 
orthologous genes in related species may not form 
strict BHB motifs, including mismatches in the 
helices and/or bulge loops with fewer or more than 3 
bases (Fig. 1B) [5,15,16]. Conventional euryarchaeal 

 
Fig 1. BHB motifs predicted in archaeal cbf5 pre-mRNAs 
[15]. A, a conventional BHB motif in Aeropyrum pernix 
cbf5 pre-mRNA. B, a relaxed BHB motif in Sulfolobus 
tokodaii cbf5 pre-mRNA. Rectangles in blue represent the 
central 4-bp helices. Triangles in green represent the 3-base 
bulge loops. Note that in S. tokodaii pre-mRNA, the C 
residue at the 3’ side of the 3’ bulge (indicated in red) 
cannot form a Watson-Crick basepair with the A residue 
(also in red) at the 5’ side of the central helix. Arrows 
represent cleavage sites with the splicing endonuclease 
confirmed in vitro [5,18]. Upper case, exon regions; lower 
case, intron regions. 
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homo-tetrameric and homo-dimeric splicing 
endonucleases cannot cleave such relaxed forms of 
the BHB motif [6]. To reveal the structural elements 
that expand the substrate recognition in the 
crenarchaeal heteromeric enzyme, we determined the 
crystal structures of two crenarchaeal enzymes, and 
found that they take a hetero-tetrameric (alpha2beta2) 
subunit structure [17,18]. Moreover, we showed that 
the specific insertion of amino acid sequences in the 
crenarchaeal enzymes, rather than the subunit 
structure of the crenarchaeal enzymes, is important 
for substrate recognition [17,18]. Transplantation of 
the insertion sequences into a euryarchaeal 
homo-dimeric enzyme expanded substrate 
recognition [19,20, Yoshinari, S. and Watanabe, Y. 
unpublished results]. A specific lysine residue in the 
inserted sequence is important for the substrate 
recognition/catalysis of the enzyme [18,19,20]. 
Although the nanoarchaeal enzyme with the 
expanded substrate recognition does not have the 
insertion at the corresponding position [21], a novel 
insertion at the alternative position may have a 
similar role [18]. 
tRNA splicing and the origin of tRNA 
 It has been proposed that tRNA was born by a 
fusion of two half RNA molecules which included a 
single stem-loop flanked by single strand regions at 
both the 5’ and 3’ sides [22]. Interestingly, some of 
the eukaryotic pre-tRNAs including introns in the 
anticodon loops have autocatalytic hydrolysis at or 
near the position of exon-intron boundaries [23], 
suggesting that a pre-tRNA molecule with an intron 
may be related to the prototypical tRNA. It would be 
interesting to investigate the autocatalytic hydrolysis 
of archaeal pre-tRNAs. Furthermore, many bacteria 
have homologs of archaeal and eukaryotic (t)RNA 
ligase, although bacteria do not have tRNA splicing 
driven by splicing endonucleases and RNA ligases 
[7], suggesting that this type of RNA ligase may exist 
in the last common ancestor of the three domains of 
life, and may have played a role in forming a 
prototype tRNA from two tRNA half molecules. 
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